続・定常特性とは?外乱に対する定常偏差・内部モデル原理を解説!

システムと伝達関数

このページでは、フィードバック制御システムに外乱が加わる場合の定常偏差と内部モデル原理について、詳しく解説します。

このページのまとめ
  • フィードバック制御器が外乱と同じ数の積分要素を持っていれば、外乱の影響を0にできる
  • つまり、外乱に対しても内部モデル原理が成り立つ
  • 積分要素が足りなくても、制御ゲインを大きくすれば外乱の影響を低減できる
モバイル端末の方へ
数式が画面からはみ出している場合は、式を横スクロールするか、横持ちしてご覧ください
スポンサーリンク

外乱に対する定常偏差の計算

最終値定理を用いた導出

次のように、フィードバック制御システムに外乱が加わる場合を考えましょう。

外乱のあるフィードバック制御システムのブロック線図

$C(s)$は制御器の伝達関数、$G(s)$は制御対象の伝達関数です。

この条件における定常偏差$e_s$を計算していきます。定常偏差は、ラプラス変換の最終値定理を用いて次式で計算できるのでしたね。

$$e_s = \lim _{t\rightarrow \infty} e(t) = \lim _{s\rightarrow 0} sE(s)$$

$E(s)$は誤差$e(t)$のラプラス変換です。$E(s)$は、ブロック線図上の関係より次のように求まります。

$$\begin{align}ブロック線図より、 & E(s) = R(s) – Y(s)\\Y(s)をE(s),D(s)で表して、\ & E(s) = R(s) – G(s)\bigr\{C(s)E(s)+D(s)\bigl\}\\ E(s)で整理して、\ & E(s) = \ubg{\frac{1}{1 + C(s)G(s)} R(s)}{前回と同じもの} – \ubg{\frac{G(s)}{1+C(s)G(s)}D(s)}{外乱の影響} \end{align}$$

$R(s)$は目標値$r(t)$のラプラス変換、$Y(s)$は出力$y(t)$のラプラス変換 、$D(s)$は外乱$d(s)$のラプラス変換です。目標値$R(s)$が作用する項は前回と全く同じです。それに加え、外乱$D(s)$が作用する項が増えていますね。

これを最終値定理の式に代入することで、定常偏差が次のように求まります。

$$e_s = \lim _{s\rightarrow 0} sE(s) = \lim _{s\rightarrow 0} \Biggl\{\ubg{s \cdot\frac{1}{1 + C(s)G(s)} R(s)}{前回と同じもの} – \ubg{s \cdot\frac{G(s)}{1+C(s)G(s)}D(s)}{外乱の影響}\Biggr\}$$

定常偏差が0になるには、$R(s)$の項に加えて、$D(s)$の項も0になる必要があるというわけですね。$R(s)$の項の考え方は前回と同じなので置いておいて、$D(s)$の項について考えていきましょう。

スポンサーリンク

単位ステップ外乱に対する定常偏差

ステップ状の外乱$D(s)=\frac{1}{s}$が与えられた場合を考えます。

ステップ状の外乱が与えられたフィードバック制御システムのブロック線図

このとき、$D(s)$の項は次のようになりますね。

$$D(s)の項=\lim _{s\rightarrow 0}s \cdot\frac{G(s)}{1+C(s)G(s)}\cdot \ubgd{\frac{1}{s}}{ステップ}{外乱}=\lim _{s\rightarrow 0}\frac{G(s)}{1+C(s)G(s)}$$

よってこの項が0になるためには、$s\rightarrow 0$で$G(s)$が0になるか、$C(s)$が$\infty$になればよいことになります。

$$D(s)の項=\lim _{s\rightarrow 0}\frac{\obg{G(s)}{これが0か}}{1+\ubg{C(s)}{これが\infty}G(s)}$$

※G(s)だけが$\infty$になると、$\frac{1}{C(0)}$に収束してしまうことに注意してください

そしてこれが満たされるためには、制御対象$G(s)$が微分要素$s$を持つか、制御器$C(s)$が積分要素$\frac{1}{s}$を持てばよいことになりますね。

古典制御で取り扱うプロパーなシステムが微分要素を持つことはほぼないため、実用上は制御器 $C(s)$ が積分要素を持っているかどうかが重要となります

結局、「ステップ状の外乱$\frac{1}{s}$に対しては制御器$C(s)$が$\frac{1}{s}$を持てばOK」と、前回と同じような結果が得られました。

外乱がランプ状・加速度状の場合も同様の議論により同様の結果が得られます(余裕のある方は計算してみてください)。すなわち、外乱に対しても内部モデル原理が同様に成り立つというわけです。

スポンサーリンク

内部モデル原理のまとめ

前回と今回の議論を統合すると、内部モデル原理は次のようにまとめられます。

外乱のあるフィードバック制御システムのブロック線図
  • $目標値R(s)=\frac{1}{s^k}$に対しては、$C(s)G(s)$が$\frac{1}{s^k}$を持てば定常偏差が0になる
  • $外乱D(s)=\frac{1}{s^k}$に対しては、$C(s)$が$\frac{1}{s^k}$を持てばその影響が0になる

目標値に対しては$C(s)G(s)$が対象ですが、外乱に対しては$C(s)$単体が対象になることに注意してください。

結局$C(s)$に積分要素を持たせれば間違いはないのですが、積分要素を増やすとシステムの安定性が低下するので、注意してくださいね。(詳しくは前回の記事をご覧ください)

シミュレーション例

それでは、上記が本当に成り立つのかどうかをシミュレーションにて確認してみましょう。

例題として、ステップ状の目標値$R(s)=\frac{1}{s}$と ステップ状の 外乱$D(s)=\frac{1}{s}$を与えられた次のシステムを考えます。

シミュレーション例にて考慮するシステムのブロック線図

制御対象$G(s)=\frac{2s+1}{s^2+2s+3}$は積分要素を1個も持っていないことに注意してください。これに対して、制御器$C(s)$で積分要素をいくつか付加していき、定常偏差を比較しましょう。

$$\begin{array}{lll} C(s) = K_0 & のとき & C(s)G(s)は積分要素\mathbf{0}個 \\C(s) = \frac{K_1}{s} & のとき & C(s)G(s)は積分要素\mathbf{1}個 \\ C(s) = \frac{K_2}{s^2} & のとき & C(s)G(s)は積分要素\mathbf{2}個\end{array}$$

$K_0, K_1, K_2$は、定数の制御ゲイン(調整パラメータ)です。これらを適当な値に設定してシミュレーションした結果がこちらです。

様々な積分要素数を持ったシステムに、ステップ目標値とステップ外乱を与えた際の定常偏差の比較

内部モデル原理の通り、制御器$C(s)$が積分要素を1個以上持つ場合に外乱の影響が打ち消され、定常偏差が0になっていますね。

対して、積分要素が0個の場合は一定の定常偏差が残ってしまっています。さらに観察すると、制御ゲイン$K_0$が大きいほうが定常偏差が小さくなっていますね。

これについて、数式で確認してみましょう。制御器$C(s)=K_0$に対する定常偏差$e_s$を計算すると、次のようになります。

$$e_s = \lim _{s\rightarrow 0} \Biggl\{s \cdot\frac{1}{1 + C(s)G(s)} R(s) – s \cdot\frac{G(s)}{1+C(s)G(s)}D(s)\Biggr\}\quadより、C(s)=K_0のとき、$$

$$ e_s = \lim _{s\rightarrow 0} \Biggl\{\ubg{s \cdot\frac{1}{1 + K_0\frac{2s+1}{s^2+2s+3} } \cdot \frac{1}{s}}{R(s)の項}\ -\ \ubg{s \cdot\frac{ \frac{2s+1}{s^2+2s+3} }{1+ K_0\frac{2s+1}{s^2+2s+3} } \cdot \frac{1}{s}}{D(s)の項} \Biggr\} = \ubg{\frac{1}{1 + \frac{K_0}{3} }}{R(s)の項}+\ubg{\frac{\frac{1}{3}}{1+\frac{K_0}{3}}}{D(s)の項}$$

$R(s)$の項、$D(s)$の項ともに、制御ゲイン$K_0$が大きくなればなるほど$e_s$の分母が大きくなるため、結果的に定常偏差が小さくなることが数式からも分かりますね。

よって外乱がある条件でも、 積分要素が足りない場合は、制御ゲインをなるべく大きくすればその影響を低減できることが分かります。

スポンサーリンク

実用上のポイント

ステップ以外の外乱はほとんど使われない

上の方で、「ランプ状・加速度状の外乱も、内部モデル原理に基づいて積分要素を付加すればその影響を0にできる」と説明しました。

もちろんこれは正しいのですが、実用上はステップ状の外乱を取り扱うことがほとんどでしょう。ランプ状・加速度状の外乱は時間とともに増えていきますが、そのような外乱は現実にはあまりありませんからね。

時間とともに外乱がどんどん増えていく様子を表したブロック線図

ステップ状の外乱のイメージ

では、よく使う「ステップ状の外乱」とは、具体的にどのようなものでしょうか?

これは、システムに常に一定の作用が加わるケースをイメージすればOKです。例えば機械システムであれば、システムに常に加わる重力や摩擦力のイメージですね。

ステップ外乱としての重力のイメージ図
ステップ外乱としての摩擦力のイメージ図

ブロック線図上でも、これらの力がちょうど入力に足し合わせる形で(外乱として)作用することになります。

ステップ外乱として重力・摩擦力が加わるシステムのブロック線図

これらの例のように原因が明確でなくても、様々な作用によって結果的に生じる「ズレ」をステップ外乱で表すこともよくあります。

正体不明のズレをステップ外乱で表した場合のブロック線図

原因が何であれ、入力に生じる一定のズレは、積分要素を1つ付加しておけばその影響を0にできる」と考えれば、内部モデル原理の便利さがよく分かるのではないでしょうか。

以上、フィードバック制御システムに外乱が加わる場合の、定常偏差と内部モデル原理についての解説でした。

本ページでは「積分要素がなぜ外乱の影響を打ち消すのか」を数式に基づいて説明しましたが、こちらのページではそれを直感的なイメージに基づいて説明していますので、合わせてご覧ください。(PID制御のI項の説明部分です)

このページのまとめ
  • フィードバック制御器が外乱と同じ数の積分要素を持っていれば、外乱の影響を0にできる
  • つまり、外乱に対しても内部モデル原理が成り立つ
  • 積分要素が足りなくても、制御ゲインを大きくすれば外乱の影響を低減できる

コメント